Rare variant collapsing in conjunction with mean log p-value and gradient boosting approaches applied to Genetic Analysis Workshop 17 data

نویسندگان

  • Yauheniya Cherkas
  • Nandini Raghavan
  • Stephan Francke
  • Frank DeFalco
  • Marsha A Wilcox
چکیده

In addition to methods that can identify common variants associated with susceptibility to common diseases, there has been increasing interest in approaches that can identify rare genetic variants. We use the simulated data provided to the participants of Genetic Analysis Workshop 17 (GAW17) to identify both rare and common single-nucleotide polymorphisms and pathways associated with disease status. We apply a rare variant collapsing approach and the usual association tests for common variants to identify candidates for further analysis using pathway-based and tree-based ensemble approaches. We use the mean log p-value approach to identify a top set of pathways and compare it to those used in simulation of GAW17 dataset. We conclude that the mean log p-value approach is able to identify those pathways in the top list and also related pathways. We also use the stochastic gradient boosting approach for the selected subset of single-nucleotide polymorphisms. When compared the result of this tree-based method with the list of single-nucleotide polymorphisms used in dataset simulation, in addition to correct SNPs we observe number of false positives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stratify or adjust? Dealing with multiple populations when evaluating rare variants

The unrelated individuals sample from Genetic Analysis Workshop 17 consists of a small number of subjects from eight population samples and genetic data composed mostly of rare variants. We compare two simple approaches to collapsing rare variants within genes for their utility in identifying genes that affect phenotype. We also compare results from stratified analyses to those from a pooled an...

متن کامل

Evaluating methods for combining rare variant data in pathway-based tests of genetic association

Analyzing sets of genes in genome-wide association studies is a relatively new approach that aims to capitalize on biological knowledge about the interactions of genes in biological pathways. This approach, called pathway analysis or gene set analysis, has not yet been applied to the analysis of rare variants. Applying pathway analysis to rare variants offers two competing approaches. In the fi...

متن کامل

Detecting functional rare variants by collapsing and incorporating functional annotation in Genetic Analysis Workshop 17 mini-exome data

Association studies using tag SNPs have been successful in detecting disease-associated common variants. However, common variants, with rare exceptions, explain only at most 5-10% of the heritability resulting from genetic factors, which leads to the common disease/rare variants assumption. Indeed, recent studies using sequencing technologies have demonstrated that common diseases can be due to...

متن کامل

Identification of genetic association of multiple rare variants using collapsing methods.

Next-generation sequencing technology allows investigation of both common and rare variants in humans. Exomes are sequenced on the population level or in families to further study the genetics of human diseases. Genetic Analysis Workshop 17 (GAW17) provided exomic data from the 1000 Genomes Project and simulated phenotypes. These data enabled evaluations of existing and newly developed statisti...

متن کامل

Application of collapsing methods for continuous traits to the Genetic Analysis Workshop 17 exome sequence data

Genetic Analysis Workshop 17 used real sequence data from the 1000 Genomes Project and simulated phenotypes influenced by a large number of rare variants. Our aim is to evaluate the performance of various collapsing methods that were developed for analysis of multiple rare variants. We apply collapsing methods to continuous phenotypes Q1 and Q2 for all 200 replicates of the unrelated individual...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2011